MDR1 (C3435T) POLYMORPHISM IN PATIENTS WITH RENAL CARCINOMA

L. Tešař¹, M. Cizmáriková², V. Nagy¹, J. Beck¹, M. Ilías³
Department of Urology, L. Pasteur’s University Hospital, Košice, Slovakia¹
Department of Pharmacology, Faculty of Medicine, P. Šafárik University, Košice, Slovakia²

Abstract

Introduction and aims: Human multidrug-resistant gene (MDR1) encode transmembrane P-glycoprotein, which plays important role in protection organism before various xenobiotics and carcinogens. MDR1 polymorphism may be associated with increased risk of development of renal carcinoma (RCC). The aim of our study was to evaluate MDR1 polymorphism in patients with RCC and compare various genotypes in relation to pathological characteristics of tumors.

Material and methods: 94 patients (44 men, 50 women, median: 61 years, range: 27-83 years) with renal carcinoma (74 clear cell RCC, 20 non-clear cell RCC) were enrolled in the study. We studied genotypes - single nucleotide polymorphism (SNP) in MDR1 gene (C3435T) in these patients by using polymerase chain reaction (PCR-RFLP).

Results: The results of our study observed no significant association between genotypes and allele frequencies by comparison patients with clear cell and non-clear cell RCC [CC vs. CT+TT: p=0.550, OR= 1.690, 95% CI 0.442-6.465 (Fisher’s exact test), C vs. T allele: p=0.603, OR= 1.207, 95% CI 0.593-2.457 (χ²-test)]. There was also no significant association between genotypes and TMN stage of disease or histological grade of tumor.

Conclusions: Future studies are needed to compare the relation between MDR1 polymorphism and other histopathological characteristics of tumors and risk to renal cancer.

Introduction

MDR1 P-glycoprotein
• transmembrane protein (ATP-dependent transporter) encoded by MDR1
• active efflux pump for a variety of toxins, carcinogens, drugs
• prevents intracellular accumulation of xenobiotics (e.g., in renal tubules)
• protects organism against exogenic and endogenic xenobiotics, toxins
• genetic variants of P-gp can contribute to:
 - cancer susceptibility (modulate risk to cancer)
 - interindividual variability in therapeutic response

MDR1 polymorphism
• silent single nucleotide polymorphism (SNP) in MDR1 gene (localized in the middle of exon 26) is the most widely studied polymorphism of MDR1
• ther is substitution of cytosine for thymine (C³⁴³⁵T)
• is associated with variant gene expression and altered PGP function
• variant Tallele is associated with increased risk to cancer

Method

• constitutional DNA was isolated from patient’s blood samples
• genotyping of SNP in MDR1 gene was carried out by using PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism)
• we determined 3 types of genotype (homozygous CC or TT, heterozygous CT genotype) and allele frequencies (C and T allele) in patients with RCC
• for all statistical analyses SPSS software (version 16.0) was used

Results

• frequencies of genotypes and allele frequencies were:
 - 21,3% (20) for CC, 44,7% (42) for CT and 34,0% (32) for TT genotype
 - 43,6% (82) for C and 56,4% (106) for T allele frequency
 - we stratified data according to histopathological characteristics:
 - clear cell vs. non-clear cell RCC
 - low (T1+T2) vs. high (T3+T4) T stage of tumor
 - negative vs. positive N and M stage of tumor
 - low (G1+G2) vs. high (G3+G4) grade of tumor
 - we observed no significant association between patients with clear cell and non-clear cell RCC in genotype and allele frequencies
 - CC vs. CT+TT: p=0.550, OR=1.690, 95% CI 0.442-6.465 (Fisher’s exact test)
 - C vs. T allele: p=0.603, OR=1.207, 95% CI 0.593-2.457 (χ²-test)
 - the data showed moderate higher frequency of CT+TT genotype and C allele in group with non-clear cell RCC, but it wasn’t statistically significant
 - no significant differences were found across other histopathological characteristics of tumors
 - low (T1+T2) vs. high (T3+T4) T stage of tumor: CC vs. CT+TT: p=0.723, C vs. T allele: p=0.920
 - low (G1+G2) vs. high (G3+G4) grade of tumor: CC vs. CT+TT: p=0.421, C vs. T allele: p=0.603
 - negative vs. positive N or M stage of disease: CC vs. CT+TT: p=0.451, C vs. T allele: p=0.764

Conclusions

• genotypic variations has a key role in variability such as cancer susceptibility
• our study confirmed no significant association between all observed histopathological characteristics of tumors differentiated according to MDR1 genotypes and allele frequencies (table)
• our results aren’t consistent with the hypothesis and other studies that the Tallele and TT genotype is a risk factor for non-clear cell RCC
• there was also no significant association between allele frequency and TNM stage of disease and histological grade of tumor
• in the future we will focused on comparison MDR1 polymorphism in RCC patients with control group to determined cancer susceptibility
• future studies are needed to compare the relation between MDR1 polymorphism and other histopathological characteristics of tumors and risk to cancer

Abbrevations: ¹ Fisher´s exact test, ² χ²-test, ³ non-significant association